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Scherk-Schwarz (SS) Reductions are generali-

sations of Kaluza-Klein (KK) reductions [Scherk,

Schwarz, 1979].

Theory must possess a global symmetry, G.

The reduction ansatz is determined by the ac-

tion of the symmetry on the fields.

–Introduces mass parameters

–Introduces a scalar potential

–Supersymmetry Breaking

–Moduli Fixing

–New massive/gauged SUGRA and correspond-

ing string compactifications. (Related with

flux compactifications in string theory)
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We generalise SS Reductions:

We use S-duality type symmetries for the re-
duction.

General meaning. A simple example is the elec-
tromagnetic duality of the Maxwell equations
in the absence of source terms

E → B, B → −E

Note that it’s not a symmetry of the action

L ∼ E2 −B2

Interchanges field equations and Bianchi iden-
tities

dF = 0, d ? F = 0

This is what we mean by S-duality:

– Acts through electromagnetic duality, inter-
changes field equations and Bianchi identity.

– Is a symmetry of the field equations, but not
the action.
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EXAMPLES

1) Heterotic String theory on T6: classical

SL(2, R) symmetry:

Montonen-Olive type S-duality symmetry act-

ing on the axion-dilaton fields

τ = χ + ie−φ 7→ aτ + b

cτ + d
, gs 7→ 1

gs

strong-weak coupling duality. Symmetry of the

field equations only.

2) D = 11 SUGRA on T d: Ed,d. If D = 2n then

a symmetry of the field equations only. e.g.

D = 4 −→ E7

D = 6 −→ SO(5,5)

D = 8 −→ SL(3, R)× SL(2, R)
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Why important??

–New gauged SUGRA

–New compactifications:

S-folds (When lifted to string/M/F theory)

Why difficult??

With a symmetry of the field equations, the

best we can do is to reduce the field equa-

tions... Messy!
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STRATEGY

Implement symmetry at the level of an “equivalent”

auxiliary Lagrangian and do the SS reduction

on the action.

The auxiliary Lagrangian has extra degrees of

freedom (dof). The number of dof is kept

correct by imposing a self-duality equation.

what do we get?

–Calculations simplified

–Novel features: massive self-duality. CS terms..

Particularly interesting in D = 4 → D = 3

[Nicolai-Samtleben, 2003]
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OUTLINE

1. Scherk-Schwarz Mechanism

2. Doubled Formalism

3. Applications
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Consider SS on S1: D + 1 → D

(y, xµ): S1 ×MD. y ∼ y + 2πR.

G : Φ 7→ g[Φ]

Scherk-Schwarz ansatz is

Φ(xµ, y) = g(y)Φ(x)

g : S1 −→ G, g(y) = exp[M
y

2πR
]

MONODROMY:

M = Φ(x,2πR)Φ−1(x,0) = eM ∈ G

Classified by conjugacy classes of M.

Mass matrix M determines the mass parame-

ters, the gauge group and the scalar potential

of the lower dimensional theory.
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G = SL(2, R) : 3 conjugacy classes ⇒ 3 dis-

tinct reductions. The hyperbolic, elliptic and

parabolic monodromy and mass matrices:

Mh =

(
em 0
0 e−m

)
, Me =

(
cosm sinm
− sinm cosm

)
,

Mp =

(
1 m
0 1

)
.

Mh =

(
m 0
0 −m

)
, Me =

(
0 m
−m 0

)
,

Mp =

(
0 m
0 0

)

Me: compact gauging SO(2)

Mh, Mp: SO(1,1)-gauged lower dimensional

theories
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Geometrical picture

Φ are sections of P (MD × S1, G). Twist the

fibers with M ⇒ non-trivial transition func-

tions.

Useful picture to understand lifting to F/M/string

theory. e.g. G = SL(2, R): Compactifica-

tion on T2 bundle over S1 (τ modulus of T2).

–non-trivialisable due to the twist– Interest-

ing when the transition functions are not geo-

metric symmetries. Consistent non-geometric

string backgrounds: T-folds, U-folds, S-folds.

[Hull, 2004]

Parabolic: T-duality along one of the legs of

T2: untwisted T3 with H-flux −→ relation to

flux compactifications.
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SUGRA, scalars:G/H, H: maximal compact
supgroup of G. r n−1 form fields Ai

n−1, Hi
n =

dAi
n−1:

L = R ∗ 1 +
1

4
tr(dK ∧ ∗dK−1)− 1

2
HT

nK ∧ ∗Hn

A → L−1A, K → LTKL

Scherk-Schwarz ansatz:

K̂(x, y) = λT (y)K(x)λ(y)

Ân−1(x, y) = λ−1(y)[An−1(x) + An−2(x) ∧ dy].

λ(y) = eMy.

Scalar Potential comes from ∂yK−1∂yK:

V (φ) = −1

2
e2(D−1)αϕtr(M2 + MK−1MTK) ∗ 1

Stable only when M ∈ H −→ Minkowski vac-
uum, no cosm. const., all SUSY is broken.
Other M give BPS domain wall solutions.
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Ĥn(x, y) = e−MyHn(x)+e−MyHn−1(x)∧(dy+A)

Hn−1(x) = dAn−2 − (−1)n−1MAn−1,

Hn(x) = dAn−1 −Hn−1 ∧ A.

Kinetic term reduces as:

[e−2(n−1)αϕHT
nK ∧ ∗Hn+e2(D−n)αϕHT

n−1K ∧ ∗Hn−1]

Stückelberg type symmetry:

δAn−1 = dλ, δAn−2 = (−1)n−1Mλ

Can be used to set An−2 = 0 by

An−1 → An−1 + (−1)n−1M−1dAn−2.

Hn = DAn−1 = dAn−1 − (−1)nMAn−1 ∧ A

Hn−1 = (−1)nMAn−1 mass term

δA = dγ, δAn−1 = −γMAn−1

Gauge group generated by M . Gauge field A
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Doubled Formalism: [Cremmer, Julia, Lu, Pope,

1998]

L = −1

2
RijF

i
n ∧ ∗F j

n −
1

2
SijF

i
n ∧ F j

n + L(Φ)

D = 2n k potential fields Ai
n−1. F = dAi

n−1.

Field Equations: dGi = 0, Gi = δL/δF i

Bianchi Identities: dF i = 0

Solve dGi = 0 by introducing k dual poten-

tials Ãi
n−1 (regarded as independent fields),

G = dÃi
n−1

It is possible to construct a manifestly G-invariant

Lagrangian L(A, Ã). ] dof is halved by impos-

ing a self-duality constraint

Hi
n = J i

j(φ) ∗Hj
n G− covariant

where

J i
j = ΩikKkj. Hn =

(
dAn−1
dÃn−1

)
.

Ω is the G invariant matrix. Note (J∗)2 = 1.
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SS reduction of the constraint (in the fixed

gauge):

DAn−1 = M̃ ∗An−1

where M̃ ∝ JM . This is a massive self-duality

condition in the odd D = 2n− 1 dimensions:

⇒ ∗D ∗An−1 ∝ M̃2 ∗An−1

Can be derived from a Chern-Simons action

with mass term:

L = PijA
i ∧DAj + M̂ijA

i ∧ ∗Aj

where M̂ = PM̃ , Pij:constant matrix.

Number of dof:

D = 2n : k massless AI
n−1 = 2k massless AI

n−1, ÃI
n−1

+ constraint = kc2n−2
n−1

D = 2n− 1 : twisted: k massless AI
n−1+k mass-

less AI
n−2 = kc2n−2

n−1 untwisted: 2k massive

AI
n−1 + constraint = kc2n−2

n−1
cs
p = s!/p!(s− p)!.
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D-DIMENSIONAL LAGRANGIAN:

LD = Lg + Lb + Ls

Lg = R ∗ 1− 1

2
dϕ ∧ ∗dϕ− 1

2
e−2(D−1)αϕF2 ∧ ∗F2

Ls =
1

4
tr(DK ∧ ∗DK−1)−

−1

2
e2(D−1)αϕtr(M2 + MK−1MTK) ∗ 1

Lb =
1

2
(Ω−1M)ij[(−1)n−1A

(i)
n−1 ∧DA

(j)
n−1 +

+e2(D−n)αϕM̃
j
kA

(i)
n−1 ∧ ∗A

(k)
n−1].



APPLICATIONS

D=8: Type IIB on T2 or 11D on T3.
The classical symmetries are
U-duality: SL(3, R) × SL(2, R)τ , τ : complex
structure modulus

T-duality: SL(2, R)σ × SL(2, R)τ , σ: Kähler
modulus, first factor is embedded in SL(3, R).

S-duality: SL(2, R)λ, Inherited from S-duality
of Type IIB in 10D. Subgroup of SL(3, R) and
conjugate to SL(2, R)σ.

Scalar fields parametrise:

SL(3, R)

SO(3)
× SL(2, R)

SO(2)

(A3, Ã3) form an SL(2, R) doublet.

?We use SL(2, R)τ to twist the reduction. Sym-
metry of field equations only and acts on 3-
form potential fields through electromagnetic
duality transfromations.
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D=4

D=4 N=8 SUGRA

E7 duality symmetry of equations of motion.

(AI , ÃI), I = 1, · · · ,28 transform under 56 of

E7. 70 scalars: E7/SU(8).

D=4 N=4 SUGRA coupled to p vector multi-

plets:

O(6, p)× SL(2, R)

(AI , ÃI) I = 1, · · · ,6+p form 6+p doublets

AmI transforming in the (2, 6+p). Scalars:

SL(2, R)/SO(2)×O(6,22)/O(6)×O(22).

HmI = Qm
nRI

J ∗HnJ

Jm
n = ΩmpKpn and RI

J = LIKNKJ .

J = Q⊗R
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D=6

D=6 N=8 SUGRA

SO(5,5) duality symmetry of field equations

only. 5 -form fields and their duals form a 10

of SO(5,5). The 25 scalars parametrise

SO(5,5)

SO(5)× SO(5)

(A truncation) of Type IIB on T6

SL(2, R)IIB × SL(2, R)EM
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